47 research outputs found

    A Comparative Study of Relaying Schemes with Decode-and-Forward over Nakagami-m Fading Channels

    Full text link
    Utilizing relaying techniques to improve performance of wireless systems is a promising avenue. However, it is crucial to understand what type of relaying schemes should be used for achieving different performance objectives under realistic fading conditions. In this paper, we present a general framework for modelling and evaluating the performance of relaying schemes based on the decode-and-forward (DF) protocol over independent and not necessarily identically distributed (INID) Nakagami-m fading channels. In particular, we present closed-form expressions for the statistics of the instantaneous output signal-to-noise ratio of four significant relaying schemes with DF; two based on repetitive transmission and the other two based on relay selection (RS). These expressions are then used to obtain closed-form expressions for the outage probability and the average symbol error probability for several modulations of all considered relaying schemes over INID Nakagami-m fading. Importantly, it is shown that when the channel state information for RS is perfect, RS-based transmission schemes always outperform repetitive ones. Furthermore, when the direct link between the source and the destination nodes is sufficiently strong, relaying may not result in any gains and in this case it should be switched-off.Comment: Submitted to Journal of Computer Systems, Networks, and Communication

    Performance Analysis of Centralized Relay Selection with Unreliable Control Information

    Get PDF
    The potential of relay selection (RS) has been well appreciated. However if the control channels, conveying information on the selected relay node (RN), are unreliable, the gains of RS diminish. This is because the transmitting RN might not be the one maximizing the employed utility function. Furthermore, more than one of the RNs might end up transmitting, an event that could be performance degrading. It is also likely that no RN transmits, which is very undesirable. In this paper we assume decode-and-forward and present closed form expressions for the outage probability (OP) under Rayleigh fading when two potential RNs are available and the control information related to RS is corrupted by errors. We show that when control channels are unreliable, the OP performance degrades significantly and reaches a floor as the signal-to-noise ratio of the RN-to-destination data channel grows. Furthermore when control channels are very unreliable, suboptimal schemes not requiring control information, like repetition coding, outperform RS

    The Potential of Moving Relays - A Performance Analysis

    Get PDF
    In this paper we show the potential of moving relay nodes (MRNs) for improving the capacity, reliability and coverage of future wireless networks. To this end we study and compare the performance of single-hop direct transmission, dual-hop MRN assisted transmission as well as dual-hop fixed relay node (FRN) assisted transmission. For an accurate comparison we derive the optimal FRN position minimizing the outage probability (OP) when the user position is known as a function of the pathloss, transmit power and vehicle penetration loss (VPL). The problem is investigated for Rayleigh fading channels and when the cell coverage area is fixed. We show that when VPL is moderate to high, MRN assisted transmission greatly outperforms transmission through FRNs as well as direct transmission, and is very promising for future wireless systems

    On the Maximum Achievable Sum-Rate of Interfering Two-Way Relay Channels

    Get PDF
    Hierarchical networks can provide very high data rates to multiple mobile stations (MSs) through a dense network of fixed relay nodes (RNs) fed by few hub base stations (HBSs). In order to achieve high spectral efficiencies RNs can act as two-way RNs. However the dense RN deployment gives rise to high co-channel interference (CCI) that limits sum-rate performance. In this letter we consider a simple hierarchical network consisting of an HBS with two highly directional antennas communicating with two MSs via two interfering two-way RNs. To mitigate CCI and boost sum-rates we propose a two-way relaying strategy based on AF combined with Network MIMO processing which is applied over the concatenation of the backhaul and access network channels. We compare our proposed strategy with a baseline DF approach and we show that it performs significantly better when CCI is dominant

    MIMO Truncated Shannon Bound for System Level Capacity Evaluation of Wireless Networks

    Get PDF
    We outline a general method for modelling the capacity of a MIMO link within a wireless, assuming that capacity of a link is a random function of SNR and signal to interference ratio (SIR), since the maximum link throughput depends on the random channel of both the user's signal and the interference. We show how a look-up table for the CDF of this random function can be obtained by link-level simulation in the presence of interference having the same characteristics as the interference found in the target network. We also exploit the Truncated Shannon Bound (TSB) to estimate the resulting capacity obtained in practice in a system using adaptive modulation and coding on the link level

    On the Impact of Control Channel Reliability on Coordinated Multi-Point Transmission

    Get PDF
    In the heterogeneous networks (HetNets), co-channel interference is a serious problem. Coordinated multi-point (CoMP) transmission has emerged as a powerful technique to mitigate co-channel interference. However, all CoMP techniques rely on information exchange through reliable control channels, which are unlikely to be available in HetNets. In this paper, we study the effect of unreliable control channels, consisting of the access links and backhaul links, on the performance of CoMP. A control channel model is introduced by assigning link failure probability (LFP) to backhaul and access links for the cooperative clusters. Three CoMP architectures, namely the centralized, semi-distributed and fully distributed are analyzed. We investigate the probability of deficient control channels reducing quality of service, and impeding transmission. General closed-form expressions are derived for the probability of a cooperative transmission node staying silent in a resource slot due to unreliable control links. By evaluating the average sum rate of users within a CoMP cluster, we show that the performance gains offered by CoMP quickly diminish, as the unreliability of the control links grows

    On the Impact of Backhaul Channel Reliability on Cooperative Wireless Networks

    Get PDF
    We study the effect of unreliable backhaul links on the performance of Coordinated Multi-Point (CoMP) techniques. CoMP has emerged as a powerful scheme to mitigate co-channel interference. Economically viable deployment of Heterogeneous Networks (HetNets) will require the use of lower-performance backhaul options, e.g. non-line-of-sight microwave links. Motivated by HetNets, a backhauling model is introduced, by assigning Link Failure Probability (LFP) to backhaul links, for the cooperative clusters. In this paper we analyze the centralized and semi-distributed CoMP architectures. We investigate the probability of deficient backhaul links reducing quality of service, by impeding transmission. By valuating the average sum rate of users within a CoMP cluster, we show how backhaul link reliability affects the performance of the cooperative cluster. We conclude, that the performance gains offered by CoMP quickly diminish, as the unreliability of the backhaul links grows

    Bringing Mobile Relays for Wireless Access Networks into Practice - Learning When to Relay

    Get PDF
    Adding fixed relay nodes (RNs) to wireless access networks requires additional costly infrastructure. Utilising mobile RNs, that is, user terminals that relay signals intended for other users being the destination nodes (DNs), is an appealing cost-effective solution. However, the changing node topology increases the required signalling for relay selection (RS). The signalling overhead consists of control signals that need to be exchanged between the RNs, the source node (SN) and the DN, to achieve the objectives of cooperation. To reduce signalling without penalising performance, the authors propose a three-step approach exploiting statistical knowledge on the likelihood of attaining performance gains by using RNs as a function of the node position (position of DNs and RNs). In the first step only the cell DNs that are likely to gain from relaying request the assistance of RNs. In the second step, for each DN that requests relaying, a limited set of RN candidates is formed. These decisions are made with the aid of thresholds applied to inter-node distances whose values are based on the acquired statistical knowledge. In the final step, RN candidates feed back the relevant channel state information to the SN that performs RS. Furthermore, the authors investigate the attained gains from mobile RNs as a function of the fading environment and they show that mobile RNs can help overcome the effects of severe fading

    On the Potential of Broadcast CSI for Opportunistic Coordinated Multi-Point Transmission

    Get PDF
    Coordinated Multi-Point transmission is a promising technique to improve the performance of the users at the cell-edge. To achieve this, in case of a centralized approach, users need to unicast the quantized channel state information (CSI), typically to the anchor base station (BS), and then each BS forwards this information to a central coordination node for precoding and scheduling. In the case of a decentralized approach, users broadcast the quantized CSI such that the coordinating BSs could simultaneously receive the CSI. The advantage of a decentralized approach is that it does not require a central coordination node, thereby not imposing stringent latency constraints on the backhaul. The CSI transmission over the erroneous feedback channel in the uplink gives rise to precoding loss and scheduling loss. In the decentralized framework, the feedback errors could result in BSs receiving a different version of the CSI. In this work, we propose a decentralized opportunistic scheduling approach, which only requires a minimal sharing of scheduling information between BSs. The results show that the sum rate achieved with the proposed method is comparable to that of the centralized approach even when there is a high bit error probability introduced by the feedback channel. We also show that when the bit error probabilities in the feedback channel are less than 10^{-4}, the decentralized approach achieves the sum rate of the centralized approach

    Performance Evaluation of Coordinated Multi-Point Transmission Schemes with Predicted CSI

    Get PDF
    Coordinated multi-point (CoMP) transmission is considered as an efficient technique to improve cell-edge performance as well as system spectrum efficiency. In CoMP-enabled systems, a cluster of coordinated base stations (BSs) are typically assumed to be connected to a control unit (CU) via backhaul links, and the provided performance gain heavily relies on the quality of the channel state information (CSI) available at the CU side. In this paper, we consider the downlink of a CoMP cluster and compare three different CoMP transmission schemes: zero-forcing coherent joint transmission, non-coherent joint transmission and coordinated scheduling. Moreover, for each of the analyzed schemes, the performance in terms of average sum rate of the CoMP cluster is studied with predicted CSI, considering the effects of the feedback and backhaul latency, as well as the user mobility. Compared to zero-forcing coherent joint transmission, we show that non-coherent joint transmission and coordinated scheduling are more robust to channel uncertainly. In addition, depending on the latency, user mobility and user locations, different schemes would achieve the highest average sum rate performance. Hence, a system could switch between the transmission schemes to improve the sum rate
    corecore